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Abstract~Local analysis schemes capable of detailed representations of micro-features of a problem
are integrated with a macro-scale BEM technique capable of handling finite geometries and realistic
boundary conditions. This paper focuses on micro-scale interactions among cracks and inclusions as
well as their ramifications on macro-scale damage evaluations. The micro-scale effects are introduced
into the macro-scale BEM computations through an augmented fundamental solution obtained from
an integral equation representation of the micro-scale features, The proposed hybrid micro-macro
BEM formulation allows complete decomposition of the real problem into two sub-problems, one
residing entirely at the micro-level while the other resides at the macro-level. This allows for inves­
tigations of the micro-structural attributes while retaining the macro-scale geometric features and
actual boundary conditions for the structural component under consideration. As a first attempt,
dilute inclusion densities with strong inclusion-crack and crack-crack interactions are considered. The
numerical results obtained from the hybrid BEM analysis establish the accuracy and effectiveness of
the proposed micro-macro computational scheme for this class of problems, The proposed micro­
macro BEM formulation can be easily extended to investigate the effects of other micro-features (e.g.,
interfaces, short or continuous fibers, in the context of linear elasticity) on macro-scale failure modes
observed in structural components. Copyright ~ 1996 Elsevier Science Ltd.

L INTRODUCTION

Many engineering materials contain defects in the form of cracks, voids and inclusions that
can significantly affect their load carrying capabilities. Damage is easily initiated as micro­
cracks around an inclusion due to the residual stresses and thermal mismatch between
inclusion and matrix properties. Accordingly, interactions among these micro-scale defects
play crucial roles in determining the strength and life of components under service
conditions. This is particularly true for relatively brittle materials such as ceramics, inter­
metallics or ceramic matrix composites.

In recent years, performance and weight goals for the next generation of high-tem­
perature applications have spurred the development of improved intermetallics and ceramic
matrix composites capable of sustained operations in the 100D--1500°C range. These
materials contain multiple phases and secondary phase particles. To model real-life appli­
cations of these high-temperature components, one must incorporate general loading situ­
ations, finite and often complex geometries of particular components, and detailed rep­
resentations of interacting inhomogeneities, along with their associated damage evolutions.
And therein lies the fundamental difficulty in the analysis of these problems. Typically, the
micro-defects and their spacings are of the order of a few micrometers while the overall
dimensions of a component may range from a few centimeters to even a meter. Thus, the
computational scheme is required, simultaneously, to provide a detailed representation of
the underlying mechanics at two widely different scales: a local micro-scale ranging from
10 to 100 /lm and a global macro-scale that may range from 10 to 1000 mm.

The computational techniques in existence today, such as the finite element method
(e.g., Oden (1972), Gallagher (1975), Bathe (1982), and Zienkiewicz and Taylor (1991»
and the boundary element method (e.g., Banerjee and Butterfield (1981), Mukherjee (1982),
Cruse (1988), Lutz et at. (1992), and Huang and Cruse (1994», are ideally suited for
macro-scale analysis and can easily handle complex geometries along with general loading
conditions. Thus, the defects are normally introduced as geometric entities in such macro­
scale computational schemes. The resulting mixed boundary value problems essentially
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assume that the defect sizes are of the same order as the geometric dimensions of the body
(e.g., Cruse and Polch (1986». In many cases, special quarter-point finite elements (e.g.,
Barsoum (1976), Yahia and Shephard (1985)) or boundary elements (e.g., Crouch (1976),
Kamel and Liaw (1991a,b), and Raveendra and Banerjee (1992)) are introduced to capture
the 0 singularity at the tip of an elastic crack. Snyder and Cruse (1975) have developed
numerical fundamental solutions for fracture problems. Cruse and Novati (1992) have also
utilized a displacement discontinuity approach to formulate a traction BIE formulation for
nonplanar and multiple crack problems. In such cases, the details of micro-scale features
are limited by the level of discretization, and the technique becomes prohibitively expensive
if a large number of micro-features need to be represented. Moreover, such a technique is
applicable only to isolated elastic cracks. These special elements cannot represent any effects
due to crack interactions, and one must rely on numerical discretization to capture such
effects. This poses significant difficulties whenever the cracks are closely packed. Besides,
these special elements cannot be directly extended to model other types of defects, such as
voids or inclusions (e.g., secondary phases and short or continuous fibers) that are com­
monly present in many real materials. And, an understanding of the evolution of such
defects in a damage cluster is critically important for estimating the characteristics (e.g.,
strength and fracture toughness) of modern intermetallics and ceramic materials.

Over the last decade or so, several researchers (e.g., Tvergaard (1982, 1989a,b, 1990) ;
Needleman (1987), Fleck et al. (1989); and Needleman and Tvergaard (1991» developed a
unit cell approach (under assumptions ofdoubly periodic defect distributions) to investigate
micro-scale issues such as void growth resulting in plastic instabilities, decohesion of hard
particles from the matrix material, etc., in the context ofcomputational mechanics. Chandra
and Tvergaard (1993) also utilized such a unit cell approach to investigate void nucleation
and growth in plane strain extrusion processes. Feng et al. (1994) have also utilized unit
cell representations to investigate micro-scale effects in sinter-forming processes. The unit
cells, however, are by definition much smaller than the macroscopic dimensions of the body
and exist essentially at a micro-scale of the same order as the defect sizes. Thus, the
computations are carried out entirely at a micro-scale. Becker (1992) also carried out
finite element analyses, entirely at a micro-scale, to investigate the effects of different
crystallographic orientations in a polycrystalline material.

Thus, the computational techniques available today are capable of analyzing a problem
at a macro-scale or at a micro-scale. They, however, cannot bridge these two widely different
scales in a single analysis. Recently, Banerjee and Henry (1992) introduced special boundary
elements and Nakamura and Suresh (1993) extended the unit cell analysis using FEM for
modeling the effects of fiber packing in composite materials. However, much work is needed
before one can directly investigate the effects of macro-scale design (geometric, loading,
and boundary condition) considerations upon the evolutions of micro-scale defects, which
essentially govern the strength and life of individual component in service.

Over the past few decades, analytical techniques have been used extensively to inves­
tigate various micro-mechanical phenomena. Several micro-mechanical models have been
developed to study the behavior of materials containing various distributions of inhom­
ogeneities, which may be reinforcements or defects. These approaches include self-consistent
(Budiansky (1965», differential (Roscoe (1952), Norris (1985)), Mori-Tanaka (Taya and
Chou (1981), Weng (1984)), and generalized self-consistent (Christensen and Lo (1979),
Huang et al. (1994» methods. Micro-mechanical models are particularly suited for the
prediction of overall properties of composites, but they cannot accurately represent the
local stress and deformation fields around each inhomogeneity. These local fields, however,
have been demonstrated to be of extreme importance for defect initiation, growth, and
coalescence (Becker et al. (1988».

Various researchers have attempted to investigate the interactions among micro-defects
in a damage cluster. Horii and Nemat-Nasser (1986) used a pseudo-traction approach for
problems involving crack interactions. Hu and Chandra (1993a,b,c) modeled the micro­
crack as distributions of dislocations and the rigid lines as distributions of tractions in order
to develop an integral equation approach for investigating interactions among cracks and
rigid lines in a defect cluster. The approach of Hu and Chandra has also been extended to
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interactions of voids, cracks, and rigid lines (Hu et al. (1993a)). The Gauss-Chebychev
quadrature scheme (Erdogan et al. (1973)) utilized by Hu and Chandra (1993a,b,c) requires
only n quadrature points for accurate representations of polynomial functions of order 2n.
Using such a scheme, they were able to investigate defect interactions at very close spacings.
For a problem involving equal-length collinear cracks with a small tip separation of only
1% of the half-length of the crack, the scheme of Hu and Chandra (1993b) with 30
quadrature points on a crack yield SIF values within 0.1 % of the analytical results of
Erdogan (1962). Hu et al. (1993a,b, 1994) also pursued a traction approach to investigate
the interactions among bridged cracks and their implications on defect coalescence in
various multi-phase ceramic materials.

The analytical and semi-analytical investigations cited above can provide crucial
insights into the behaviors of interacting micro-defects in a damage cluster. However, these
analyses are mostly carried out under assumptions of infinite bodies or extremely simplified
geometry and loading conditions, which severely restricts their applicability to real-life
situations involving complex finite geometries and general loading conditions. Thus, on
one hand, there are analytical models capable of yielding very accurate results for various
micro-scale phenomena involving evolutions of micro-defects in a damage cluster, but
for very simple geometries and loading situations. On the other hand, very powerful
computational techniques have been developed to handle real-life-macro-scale problems
involving complex finite geometries and general loading conditions, yet it is very difficult
to relate the effects of macro-scale parameters on the interactions and evaluations of micro­
features present in a real material.

To address this issue, Chandra et al. (1995) have recently developed a hybrid micro­
macro BEM formulation capable of representing interaction effects in micro-crack clusters.
The present paper extends the hybrid micro-macro BEM technique to inclusion-crack
interactions. The proposed BEM formulation can handle a wide variety of harder (than
matrix) or softer inclusions. Thus, a void may also be modelled as a very soft inclusion.
Over the years, the necessity of a fundamental solution in a BEM analysis have traditionally
been viewed as one of its weaknesses. In the present work, however, this particular feature
of BEM provides an avenue for incorporating insights gained from micro-scale analytical
investigations into a macro-scale computational technique. This allows us, in a single
analysis, to investigate the effects of macro-scale variations in geometrical features and
boundary conditions on the micro-scale evolutions ofdefects in damage clusters. The micro­
phenomena are captured in the fundamental solution, and the conventional BEM technique
is used to relate them to the macro-scale problem. Such an approach also facilitates
sequential modeling of the micro-features and the macro-scale problem. Thus, it obviates the
problem of proliferation of degrees of freedom that is commonly observed in computational
efforts attempting to capture both micro- and macro-features of a problem:

The present paper starts with a brief exposition of some relevant analytical results.
The micro-scale features of the problem are addressed next, and an integral equation
technique is used to numerically construct the appropriate fundamental solution. As a first
attempt, circular inclusions with dilute densities are assumed and particular attention is
paid to crack-crack as well as crack-inclusion interactions. However, it should be emphas­
ized that, following the work ofHu and Chandra (1993a,b,c) Hu et al. (1993a,b, 1994) and
Huang (1993), fundamental solutions can also be obtained for problems involving other
micro-features, e.g., fibers and interfaces and elliptic inclusions. The augmented fun­
damental solution is then incorporated in a direct BEM approach to solve the macro-scale
elasticity problems. The numerical results obtained from the proposed hybrid micro-macro
BEM formulation are first verified against available results in the literature. The capabilities
of the proposed scheme are investigated, and various salient features are discussed.

2. MICRO-SCALE FUNDAMENTAL SOLUTIONS

The fundamental solutions representing the micro-features involving interacting cracks
and circular inclusions are developed in this section. The macroscopic body as well as the
inclusion are assumed to be elastic. In order to evaluate the augmented fundamental
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Fig. I. A general system containing an inclusion and multiple micro-cracks.

solution for later incorporation into the macro-scale problem, the finite body with the
inclusion and micro-cracks is first embedded in an infinite domain and is subjected to a
point load at any desired location inside or on the boundary of the embedded finite body.

A system containing a representative micro-structure with multiple micro-cracks in
the vicinity of a circular inclusion is shown in Fig. 1. A global Cartesian coordinate system
is chosen such that its origin is located at the center of the inclusion. The inclusion, of
radius R, shear modulus Gz and Poisson's ratio vz, is assumed to be perfectly bonded to a
matrix material with shear modulus G] and Poisson's ratio Vj. Around the inclusion there
are M cracks in the matrix. The associated polar coordinate system is denoted by rand 8, and
a local normal-tangential coordinate system corresponding to the ith crack is represented by
sci) and t(l), in which the occupancy of the ith crack is taken as - aU) < t(1) < a(i). The
geometry of the ith crack is specified by the center coordinates (x~i), y~i»), orientation angle
8~i), and the half length of the crack di).

In addition to satisfying the linear and angular momentum equilibrium equations, the
system must also meet the continuity conditions of displacements and tractions across the
inclusion-matrix interface. Moreover, the crack interface must be traction free (omitting
any effects of crack closure).

Following the superposition technique utilized by Hu and Chandra (l993a,b,c), the
above problem can be decomposed into two sub-problems. As shown in Fig. 2, the first
sub-problem deals with the matrix embedded with the inclusion, subject to the same external
loading (point load) as the original problem, but in the absence of any cracks. The second
sub-problem is concerned with cracks along with the balancing tractions needed to maintain
traction-free conditions along the crack surfaces for the overall problem, but subject to no
external loading.

Considering the first sub-problem, the traditional technique (Banerjee and Butterfield
(1981), Brebbia and Dominguez (1992)) has been to consider the inclusion as a zoned
medium within matrix, discretizing the boundaries of the body, including the inclusion­
matrix interface and forcing continuity of displacements and tractions along the interface.
The equations formulated for both inclusion and matrix may then be solved simultaneously,
once the external boundary conditions are taken into account (e.g., Banerjee and Butterfield
(1981), Brebbia and Dominguez (1992)). Such an approach requires simultaneous dis­
cretizations of macro-scale external boundary as well as micro-scale inclusion and cracks
interface boundaries. Typically, overall dimensions of components are 3-6 orders of mag­
nitudes bigger than the dimensions of the micro-features, and the computational technique
becomes prohibitively cumbersome if these widely different scales are included in a single
analysis.
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Fig. 2. Decomposition of the original problem.

A two step approach, where the first step deals with the micro-features and the second
step incorporates the results from the micro-scale investigations into a macro-scale analysis
is pursued in the present work. The fundamental solution provides a bridge for transition
from the micro- to the macro-scale.

In the present analysis, the solution to the first sub-problem, that of a point load in an
infinitely extended matrix embedded with an inclusion, is derived using the Airy stress
functions (Dundurs and Hetenyi (1961), Hetenyi and Dundurs (1962)). The displacement
field at a source point p may be written as

(1 a)

and

(1 b)

in which the equilibrium equations of the stress state at any point within the matrix or the
inclusion as well as the interface continuity conditions are exactly satisfied. V ij and Tij are
well known two-dimensional Kelvin solutions in the absence of any body forces and may
be expressed as

and

-I
Vij(p, q) = 8n(1 _ v) [(3 -4v) In rbij - rfJ

-1 [ or ]Tij(p,q) = 4n(1-v)r {(1-2v)bij+ 2r f,J an -(1-2v)(r,inj-rjnJ

(2a)

(2b)

Vij and Tij are additional parts (Hu et aI., 1994a) due to variation of material parameters
between the matrix and the inclusion. The expressions for Vij are shown in the Appendix.
With the same scheme, Tij can be easily derived.
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In eqns (I) and (2), p and q, respectively, denote a source and a field point at an
internal point while P and Q express a source and a field point on the boundary. The
distance between the source and the field points is denoted by r, and ej represents a unit
vector. Equation (I) is written for plane strain. For plane stress, v should be substituted by
17= v/(I + v). It should also be noted that Vii contains a singularity of the order In(r) and
T'i contains a singularity of the order (l/r) as r approaches zero, and ai[ as well as ti[ are
regular anywhere within the matrix. Thus, the first sub-problem may be investigated by
implicitly accounting for the inclusion and without any discretization of the inclusion­
matrix interface.

For the second sub-problem, following Bilby and Eshelby (1968), Atkinson (1972),
Erdogan et al. (1974) as well as Hu and Chandra (i993a,b,c), a crack can be modeled as a
continuous distribution of dislocations. We consider an infinitely extended matrix con­
taining M interacting micro-cracks around an inclusion. The components h~" and b\1) of the
dislocation density vector along the ith crack may be expressed as,

(3a)

(3b)

where 8;1) and 8\'1 represent the glide and climb movements, respectively, in the local
tangential-normal (lll, Sll') coordinate system for the ith micro-crack whose orientation is
shown in Fig. 1.

Dundurs and Mura (1964) have investigated the problem of a two-dimensional infinite
body embedded with an inclusion subjected to an edge dislocation with Burgers' vector
components b, and hJ acting at a point (~, 0). Based on their results, a fundamental solution
at (x,y) due to an edge dislocation at (~, 0) may be obtained as (Hu et al. (l994a)):

I "
U i = -')'(-I-.-)- H,ll(, y; s)h I

_7r -VI
(4a)

(4b)

where Gj is the shear modulus of matrix. The constant K j =(3-4v j) for plane strain and
KI = (3 - vj)/(l + Vj) for plane stress. The detail of the kernels Hi[ are presented in the
Appendix, and Jiik may be found in Hu et al. (1994a). It is important to note here that the
stress fields in eqn (4) contain a singularity of the order of r as the distance r between a
field point (x, y) and a source point (~, 0) approaches zero.

Using the same approach of Hu and Chandra (i993a,b,c) and neglecting any crack
closure during the application of the external load, the governing equations for the mth
crack in a system of arbitrarily oriented M interacting cracks around an inclusion may be
expressed as

(5)

in the local tangential-normal coordinate system for the mth crack. The index} is identified
as the normal direction for the mth crack. The index k refers to the local coordinates of the
mth crack while the index I refers to those of the ith crack (k, 1= 1,2). Here, b}i) represents
the unknown dislocations on the ith crack, and a;Z'°1 denotes stress components at the
presumed location of the mth crack due to external loading shown in the first sub-problem
in Fig. 2, but in the absence of any crack. The governing eqn (5) represent the traction-free
conditions at crack surfaces. The equilibrium for the resulting stress fields and continuity
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conditions across the interface of inclusion and matrix are satisfied by virtue of Kw Any
tractions applied directly on the crack surfaces can also be handled by suitably modifying
(J)'k0

). Here, the kernels K jkl in eqn (5) may be obtained by transforming the kernels 1jk! to
an appropriate local coordinate system for the mth crack and may be expressed as,

K ( (m) U)) - G I I [(1 1') (1 . 1 ' ,)]' r fjll t ,t - p(l+k
l

) l 22ICOSY- 222smy - III COSy- 112smy sm, cos

+(1121 cosy-l122 siny)(cos2f-sin 2f)} (6a)

K jl2 (t(m) , tU)) = p(l~kl) {[(122l siny+l222 cos y) - (1111 siny +1112 cosy)] sinfcosf

+ (1121 siny+l122 cosy)(sin2f-cos2f)} (6b)

K ( (m) (I)) G I I(l 1'· , "f (1 1') "j'j21 t ,t =p(l+kl)l lIICOSY- 112smy)sm- + 221 cosy- 222smy cos~

-2(1121 cosy-l122 siny)} (6c)

K ( m) U)) GI f (1 ' 1 ) , 2f' (1 ' 1 ) 2f'j22 t ,t = p(l +k
l

) l III smy+ 112 cosy sm ,+ 221 smy+ 222 cosy cos,

-2(1121 siny+l122 cosy) sinfcosf} (6d)

where angles lj; and ¢ depend on the geometries of the ith and mth cracks, integral point
coordinate t(i), and collocation point t(m) in the following way:

lj; = f3 - 8;i)

with f3 defined as

sin f3 = xp/rp

cos f3 = yp/rp

and

x p = X~i) + tU) cos 8;i)

YP = y~i) + tUI sin 8~i)

r - / x2 + ,.2
p-y'P /p'

Also, the kernels lljk may be replaced as

with x, y, and ~ found as

x = r(m j cos(y - f3) + t(m) cos(8;ml - f3)

y = r(m) sin(y - [3) + tim) sin(8;m1- f3)

(7a)

(7b)

(8a)

(8b)

(9a)

(9b)

(9c)

(10)

(lla)

(11 b)

(IIc)

Here, rem) represents the distance between the origin of the inclusion and the center of the
mth crack and y is the angle between the x-axis and the line connecting the origin and the
center of the mth crack.
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It may be observed that eqn (5) gives rise to 2M integral equations. In order to solve
these equations completely for b~i)(l = 1,2), however, we need to evaluate 2M additional
constants of integrations. The 2M additional equations may be obtained by considering
the single valuedness of the displacements. This yields

(12)

Equations (5) and (12), together, now provide an integral equation representation of
the micro-scale effects containing M interacting micro-cracks around the inclusion in an
infinite matrix. These governing integral equations can be solved very accurately and
effectively (Hu and Chandra (1993a,b,c)) using the Gauss-Chebychev quadrature scheme
proposed by Erdogan et al. (1973) for singular integral equations.

The discretized system contains 2M(L - 1) algebraic equations (where L is the number
of Gauss points on a crack and M is the number of cracks) but 2ML unknowns. Equation
(12), expressing the continuity of crack opening shapes, provides the additional 2M equa­
tions.

After solving the integral equations (5) and (12), one may get the displacement and
stress (hence the traction) fields in the second sub-problem sho~n in Fig. 2. Knowing
U~R2) and T~R2), as well as the unit vectors, the appropriate kernels Vij and Ti; may now be
obtained (Chandra et al. (1995), Rizzo (1994)) for use in a macro-scale BEM analysis.
These may be expressed as,

(13a)

and

(13b)

for the desired sets of source and field points. The kernels VII and Tij capture the effects due
to micro-scale crack-crack as well as crack-inclusion interactions.

The complete augmented kernels may now be constructed as

(14a)

and

(14b)

where ViI and Ti; are the conventional kernels obtained from the Kelvin solution (2); Oi;
and Tij are the kernels representing perturbations due to elastic inclusions; Vij and Tij are
the kernels capturing the effects of the micro-cracks on the particle reinforced composite
(details of these kernels are provided in the Appendix). The augmented kernels Vij and t u'
capturing the micro-scale effects, may now be utilized directly in a macro-scale BEM
analysis of general elastic structures subject to realistic loadings and boundary conditions.

3. MICRO-MACRO HEM FORMULATION

Using Betti's reciprocal theorem (e.g., Banerjee and Butterfield (1981), Mukherjee
(1982), Brebbia and Dominguez (1992)) or a weighed residual approach (Okada et al.
(1990)), a hybrid BEM formulation requiring only macro-scale discretization may be
developed as (Cruse (1988))
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(15)

Equation (15) captures the effects of inclusions and micro-cracks through the augmented
kernels. A boundary integral equation for the unknown components of displacements and
tractions in terms of the prescribed ones can be obtained by taking the limit as the internal
source point P approaches a boundary point P. This leads to the boundary equation

(\6)

As noted in Section 2, the kernels Vu and f u are regular everywhere. Also, the kernels U'I
and T'j will never be singular for a micro-crack cluster that is completely internal to the
body. Hence, the singularity of U,/P, Q) and Tu(P, Q) will essentially be contained in
V,/P, Q) and T,/P, Q), respectively. The coefficients Cumultiplying u, in the free term arise
from the integration of T,/P, Q)u,(Q). Hence, for two-dimensional problems, CII = 1/2bu
if the boundary aB is locally smooth at P. Otherwise, Cu can be evaluated in closed form
for two-dimensional problems (Mukherjee (\ 982». Alternatively, proper combinations of
C,/P) and L'BTuCP, P) dSQ can be obtained indirectly for general two-dimensional and
three-dimensional bodies with sharp corners using rigid body modes (Cruse (\ 974), Cruse
(1988». In the present work, the indirect approach is used to obtain desired combinations
of Cj(P) and SI'BT'j(P, P) dSQ in terms of the off-diagonal terms. It should be noted here,
that eqns (15) and (16) involve boundary integrals only and require discretization only on
the macro-scale boundary cB of the body. Thus, the traditional advantages of a BEM
approach for homogeneous problems (e.g., Banerjee and Butterfield (\981), Mukherjee
(\ 982), Cruse (\ 988» are completely preserved.

The next step in the BEM formulation is to obtain the internal stresses. To achieve
this goal, eqn (15) is analytically differentiated at an internal source point p:

up(p) = f. [Uu.!(p,Q)T,(Q)-T',J(p, Q)u,(Q)] dsQ .

eS
(17)

Here, I following a comma denotes differentiation with respect to a source point. The
resulting displacement gradients at the source point can then be used in a Hook's law to
determine the internal stresses

(J'j = Auubu+G(u,.j+ul.,). (18)

The differentiated kernels Uui and Tu.! must now be evaluated. These may be written
as

(19a)

and

(l9b)

Here, Vui and Tli.fi are the source point derivatives of V u and TiJ. Since Vu and T" are two
point kernels and

(20)

these may be evaluated easily using analytical techniques. Similarly, ViJi and f UJ can be
determined in closed forms.
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The kernels Ui}.!< and TltJ; depend on the sizes and distributions of the micro-cracks.
Hence, they cannot be easily represented in terms of the corresponding field point deriva­
tives. The source point derivatives of displacements may, however, be obtained by directly
differentiating the displacement components u, (i = 1,2) in eqn (4a) at a source point. It is
interesting to note that the kernels Kill through Kj22 in eqn (5) do not depend on the macro­
scale source points. Accordingly, the source point displacement and stress gradients may
be written as

(21 a)

(21 b)

Here, bk] may be evaluated from direct differentiation of eqn (5) as

(22)

Again, ~kl(t(m), t(i)) are independent of the macro-scale source points and ooi~~~(t(m))

represents the stress gradient at the location of the rnth crack but without any cracks in the
system. Accordingly, bun can easily be evaluated by solving eqn (22).

For efficient computations, eqn (22) can actually be solved by retaining the same
matrix decompositions used for solving eqn (5) and modifying the right-hand side. Then,
ujip) may be obtained from eqn (21a). The augmented kernels Vii.! and t,p may then be
obtained from eqn (18). The stresses at an internal point may now be evaluated through
eqns (17)-(18).

In order to evaluate the stress intensity factors (SIF) at the crack tip, the stresses are
evaluated at several points near the crack tip and the SIF is interpolated. It has been
observed by Owen and Fawkes (1983) that stress evaluations at O.Ola, O.04a, and O.16a (a
being the half-length of the crack) are optimum for this purpose. Chandra et al. (1995)
found the stress evaluation at O.Ola can also give very good SIF results but with better
efficiency. A similar scheme is used here to determine the crack tip SIFs. An alternative
scheme involving only boundary quantities, recently proposed by Huang et al. (1995), may
also be used for determining crack opening displacements and crack tip SIFs. The scheme
is based on the reciprecal theorem in order to evaluate the crack opening and sliding
displacements near each crack tip.

The computation of the boundary stresses may be carried out following well established
techniques (e.g., Cruse and Vanburen (1971), Rizzo and Shippy (1977), Chandra and
Mukherjee (1984, 1987)).

For two-dimensional problems, the calculation involves four vectors and two tensors
at the source point P on the boundary. The vectors are tractions r h the tangential derivative
of displacement oujot on cB at P, as well as the unit normal and tangent vectors nand t at
P. The tensors are the stresses (lil and displacement gradients uP(p). The 7 unknown tensor
components, (lii and uj.l(p) , can now be obtained from the following set of equations (7
scalar linear algebraic equations) at P:

(lii = ;.Uk.k i5 Ij+G(u,.j+u,J

CUiat = U,},.

(23a)

(23b)

(23c)

In eqn (23c), the tangential gradients of displacement (oujct) need to be evaluated numeri­
cally from the known boundary displacements. The tractions (r;) are also known, and eqn
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(23) involving 7 unknowns in (Ju and ui,i can be solved from 7 scalar linear algebraic
equations.

4. NUMERICAL IMPLEMENTATIONS

Numerical implementations of the REM eqns (15)-(17) for analyzing planar elastic
problems containing circular inclusions and multiple cracks are considered in this section.
The boundary of the macro-scale problem is divided into N boundary segments (or
elements). Geometric corners are accounted for through zero-length elements (Mukherjee
(1982)). Suitable shape functions must be chosen for the variations of displacements and
tractions on the boundary elements. In the present work, straight boundary elements are
used with linear shape functions for both displacements and tractions. No other dis­
cretization is necessary for the macro-scale problem, and the micro-scale effects of the
inclusion and micro-cracks are introduced through the augmented fundamental solutions.

For the micro-scale problem, 9 integration points are used on each crack for solving
eqn (5). A Gauss-Chebychev polynomial scheme requires only n quadrature points for
accurate representations of polynomial functions of order 2n. This makes it very effective
for interacting inclusions and cracks at close spacings. The issues regarding the effectiveness
of such a scheme are available in various references (e.g., Erdogan (1975), Theocaris and
loakimidis (1977), Melin (1983), Li and Hills (1990), Rubinstein (1990), Hu and Chandra
(1993a,b), and Chandra et at. (1995)).

All integrations involving kernels VI} and TI} are carried out analytically, and all
integrations regarding kernels Vii and T ij are obtained by standard Gauss quadrature. The
kernels flu and Tij are found numerically. Accordingly, all integrations involving these
kernels are also c<irried o~t numerically. It is interesting to note here, that the kernels Vu
and Tij as well as U uand T u are regular while the source point lies on the boundary. Hence,
the accuracy of the proposed REM scheme is not compromised by the numerical integration
of these kernels.

Finally, the boundary eqn (16) may be transformed into an algebraic system of the
type

[AHu} + [B]{T} = 0 (24)

for the complete elastic micro-macro problem. In eqn (24), only macro-scale discretizations
are needed and the micro-scale effects are incorporated through the augmented fundamental
solution (14). Equation (24) may now be solved easily for unknown displacements and
tractions for a well-posed problem. For the square macro-scale domains used in example
problems a total of 44 boundary nodes with 40 boundary elements are used. Another two
sets of numerical computations were carried out with 64 boundary nodes and 60 boundary
elements, and 124 nodes and 120 elements, respectively. For the specific problem con­
figuration shown in Fig. 5, the normalized mode I SIF(K;) differed by less than 0.25% as
number of boundary elements were increased from 40 to 120, showing convergence of
numerical results.

5. NUMERICAL RESULTS

The proposed hybrid micro-macro REM scheme is first verified against known solu­
tions involving inclusion-crack interactions. For all cases, the stress intensity factors are
normalized with respect to that for a single crack in an infinite plane (O"oJ;; for uniaxial,
and ToJ;; for pure shear loading), where 0"0, To are the remote stresses and ais the half
length of the crack. In this section, the radius of the inclusion is denoted as R. The proposed
REM scheme can handle plane stress or plane strain problems, however, only plane strain
problems are considered in this section.
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Fig. 3. Effect of inclusion size parameter hi R on the normalized SIF for harder inclusions vs the
normalized geometry parameter b.

As shown in the inset of Fig. 3, a problem with a circular inclusion of radius R at the
center of a square (of dimension 2h x 2h) finite domain and accompanied by two collinear
symmetric cracks of length 2a each is considered first. The square domain is subjected to
uniaxial tension. The distance of the center of the crack from the center of the inclusion is
denoted by d. Accordingly, the non-dimensional parameter 15 = (d-R)la represents the
proximity of the cracks to the inclusion or the boundary of the domain. The ratio hi R
represents the size of the square domain relative to the inclusion. The normalized mode-I
SIFs at the inner crack tips obtained from the hybrid micro-macro BEM computations at
different hiR values of 5, 10 and 20 are plotted in Fig. 3 with respect to 15. Harder inclusions
with G2 /G] = 4.0 and V2 = VI = 0.25 are used in these computations. It may be observed
from Fig. 3 that the results compare very well to those obtained by Hu et al. (l993c) for
hlR = oc, when the boundary of the domain remains far away from the micro-features.
Significant deviations in mode-I SIFs are observed as the micro-features approach and
interact with the boundary. Figure 4 depicts the same situation as that in Fig. 3, but with
a softer inclusion (G 2/G j = 0.25). It is observed that the crack-inclusion interactions are
very strong at close spacings. When the micro-features remain far away from the edge of
the body, the mode-I SIFs for softer inclusions also agree very well with those obtained by
Hu et al. (l993c) for hlR = oc. As the cracks move toward the edges of the square
body, inclusion-crack interactions become weaker while the edge-crack interactions become
stronger.

Figure 5 shows the effects of variations in material properties of the inclusion relative
to the matrix material on the inner-tip SIFs. The effects of variations in shear modulus are
shown in Fig. 5 for hiR = 20 and VI = V2 = 0.25. The ratio of the shear moduli is varied as
G2/G) = 4.0, 1.0 and 0.25, respectively. It is observed that such variations produce signifi­
cant effects only at close spacings to interacting cracks. It is well known that the interactions
of collinear cracks in a homogeneous solid always produce amplifications of the inner-tip
SIFs. It can be clearly seen in Fig. 5 that the presence of an inclusion between the collinear
cracks significantly affect the SIFs at the crack tips. A softer inclusion amplifies the SIFs,
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while a harder inclusion provides shielding. Variations in Poisson's ratio V2/V, also produce
similar effects as that due to variations in shear modulus ratio G2 /G \. However, such effects
due to variations in v21vj have been observed to be less significant than the SIF modulations
induced by variations in G2IG,.

The effects due to variations in relative sizes of inclusions compared to cracks (denoted
by Ria ratio) are investigated next. Figure 6 shows the SIF modulations at varying
b = (d- R)la, for three different Ria ratios = 0.5, I and 2, for both harder (G 2 /G, = 4.0)
and softer (G 2/G I = 0.25) inclusions. As expected, harder inclusions produce stress shield­
ing, while softer inclusions lead to stress amplifications. The SIF modulations are greatest
at smaller values of b. At a fixed 15, a greater Ria ratio produces a higher modulation. For
example, at b = 1.5, SIF changes from 0.9377 to 0.7611 (for G21G I = 4.0), and 1.1489 to
1.4066 (for G2/G] = 0.25), as Ria is varied from 0.5 to 2.

A square domain containing an inclusion surrounded by a varying number of radial
cracks and subjected to uniaxial tension is investigated next. Such radial cracking may
commonly occur from secondary phases due to mismatch in coefficients of thermal expan­
sion (Huang et al., (1992)) and associated transformation loadings. The number of radial
cracks is varied from 2 to 8 with equal spacing. The inner SIF values are taken from
the horizontally oriented cracks. As observed in Fig. 7, a hard inclusion (G 2/G I = 4.0,
VI = V2 = 0.25) provides shielding in general. This shielding, however, is tempered by crack­
crack interactions that become stronger as the number of radial cracks increases and their
spacing decreases. It is interesting to note, however, that the SIF modulations due to such
interactions are nonlinear in nature. As N (number of cracks) is changed from 2 to 4, the
SIF modulation is negligible. However, it becomes much more significant as N is increased
further to 4 and 8. Such effects may be explained by the fact that, at closer spacings, the
radial cracks also provide shielding due to crack-crack interactions. Accordingly, the overall
shielding is stronger at higher number of radial cracks. At b = 1.1, the normalized SIF
drops from 0.5977 at N = 4 to 0.3092 for N = 8. Figure 8 shows the SIFs for the same
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problem but with a softer inclusion (G 2/G] = 0.25). A softer inclusion causes stress ampli­
fication, in general, due to inclusion-crack interactions. However, as the number of radial
cracks increases (>4), this amplification is modulated by the shielding effects due to crack­
crack interactions among radial cracks. It may be observed from Fig. 8 that, at b = 1.1, the
normalized inner-tip SIF drops from 1.69 for N = 4 to 1.3216 for N = 8. It is also observed
that, depending on the number of radial cracks, the softness of the inclusion and their
spacings, there exists a critical number of radial cracks, above which the overall behavior
manifested by the normalized SIFs may change from amplification to shielding (e.g.,
G2/G] = 0.25, Ria = 1.0, N = 8, b > 1.4). Comparisons of mode I and mode II SIFs for
Ria = 1.0, hlR = 20 and N = 6 are shown in Fig. 9 (harder inclusion: G2/G] = 4.0) and
Fig. 10 (softer inclusion: G2/G] = 0.25). Kj and Kll for the horizonatal crack along the
positive x-axis and the inclined crack in the first quadrant are shown. As expected, K ll for
the horizontal crack is zero under uniform uniaxial loading in the vertical direction. The
inclined crack exhibits non-zero K j and Kll. Due to the high mode I SIF, however, the
horizontal crack will be expected to propagate first. With increasing b, this K[ increases for
the harder inclusion, but decreases for the softer inclusion. In both cases, the K[ approaches
an asymptotic value of 1.0 for large b. For very large b, however, the outer crack tip would
interact with the free edge of the plate (as shown in Figs 3 and 4), and K[ would increase again.

Finally, the problem of a circular inclusion accompanied by two collinear cracks in a
square finite body under pure shear loading is considered. In this case, hiR = 20, material
properties are taken as VI = V2 = 0.25 and G2IG] = 4.0. Under pure shear loading, the
computations show that the dominant term is K ll while K j is very small and negligible. As
shown in Fig. 11, similar to uniaxial loading, the crack-inclusion interactions provide
shielding to the Klls. Hu et al. (l993c), have obtained SIFs for infinite bodies, that are valid
when cracks are far away from the edge of the finite domain. For hlR = 20, the BEM
results compare very well to those obtained by Hu et al. (1993c) for an infinite body.
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6. DISCUSSION AND SUMMARY

The problem of interacting micro-cracks around an inclusion in a system involving
complex finite geometries and general boundary conditions is considered in this paper. A
hybrid micro-macro BEM formulation capable of handling interactions among the
inclusion, arbitrarily distributed cracks and the boundaries of the system is developed. The
effects of micro-scale features are introduced into the macro-scale BEM analysis through
an augmented fundamental solution. Thus, the hybrid scheme retains the boundary nature
of the problem and associated advantages of a BEM formulation.

Several numerical examples have been shown in order to verify and validate the
capability of the proposed BEM formulation for analyzing problems stated above. It is
observed that the proposed scheme can solve these problems accurately and effectively. The
numerical results reveal that the inclusion-crack and crack-crack interactions can greatly
affect the nature of local stress distributions.

Many real-life materials are reinforced as matrix materials by mixing some fibers to
form composite materials. During the processing and later routine use of these composite
materials, it is quite likely that some micro-cracks would nucleate around the fibers. The
proposed hybrid micro-macro BEM formulation can capture the effects of such micro-scale
phenomena within the context of macro-scale structural computations. The proposed
technique can also be generalized through a unit cell approach to obtain effective macro­
scale material properties based on its micro-scale features (Huang et al. (1995)).
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APPENDIX

The perturbation parts Vi; in eqn (Ia) can be derived from the Airy stress functions given by Dundurs and
Hetenyi (1961, 1962).

2 (
X' xl) A(fJ' -I)R [ x, 4xi (fJ' -I)R (I 2xl)J- AK 1 --:;----:;- + . -(K1+1)--:;-+-+ . ~--
r" r, f3' r; r1 fJ r, ri

A(fJ' -I)R [ Y 4x,y (fJ' -I)R 2X,y]
+ -(K1+l)-+--- '--

fJ3 ~ ~ fJ ~

Rx, A(fJ' -I)R [ x, 4xl (fJ' -I)R (I 2x.l)J'-- (K +3)-+-- . ---
rl fJ3 1 d r1 fJ rl r1

The kernels HiJ in eqn (4a) are given as follows:

_A(fJ'-l)'R((KI-I)'Y_2(fJ2-I)R'X2'Y + 4xlY)

fJ' rl fJ •r1 ri

_ A(2x
2
+R') _ A(fJ2-1)'R((Kl +3)'x, _ 4xl_ 2(fJ'-I)R(~_2x.l))+ 2AR'x'

r' fJ3 d ri fJ d ri r 4
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x2
_ 'JR' X

2 x:
H 12 = - (1- K,)' Log(rd-2~-(B-AK,)' (Log(r) - Log(r,) - -~-'- +2A ~

rj r2 r2

A(fJ'-I)'R( V (K +I)'v 4xh 2(fJ'-I)R'X"V)+ _2fJ "--- + 1 • _ ~', + " .
/33 d d r1 f3. ri
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R Y 2AR 2 xv
+[A(2fJ'-I)+M(K2+ 1)-lj-fJ'- +--'

r2 r4

+ A(fJ2_1)'R(_2fJ2X, + (3-KJl'X, _ 4xj + (fJ'-I)R(_~+ 2X~))
fJ3 d d rj fJ d rj

, R X 2AR 2x'
+[A(2fJ'-I)+M(K,+ 1)-ll-fJ'~+--

r~ r4

fJ = c)R. f = G,/G"
I-f

A=-­
l+fK1 '

K,-fKB=_,__l

K,-f .

r'=x2 +y', ri=X~+Y~, d=xi+yi, £i=tan'l(y/x), £i,=tan-1(y!x,).


